روشهای نقطه درونی برای مسائل بدحالت گسسته مقید با ابعاد بزرگ
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان
- نویسنده ماریه پورمحمدی
- استاد راهنما مازیار صلاحی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
مسائل درجه دوم بدحالت در بسیاری از مدل های دنیای واقعی همچون بازسازی تصاویر پدید می آیند. حل اینگونه مسائل با روشهای معمولی اغلب منجر به جوابی بسیار دور از جواب واقعی می شود. در این پایان نامه به بررسی مسئله کمترین مربعات نامنفی می پردازیم. ابتدا یک الگوریتم بر مبنای روش نیوتن تعمیم یافته برای حل آن ارائه می دهیم، سپس با استفاده از روشهای نقطه درونی الگوریتم دیگری را که در فرآیند حل از روش تکراری lsqr بهره می برد معرفی خواهیم کرد. در پایان نیز کارایی الگوریتم های ارائه شده، دستور lsqnonneg متلب و نرم افزار lstrs روی چندین مثال بدحالت تشریح شده است.
منابع مشابه
روشهای نقطه درونی برای حل مسائل برنامه ریزی خطی
برنامه ریزی خطی مساله ای است با مینیمم سازی یا ماکزیمم سازی یک تابع خطی، همراه با محدودیت های خطی به صورت مسای یا نا مساوی است. اولین روش برای حل این مسائل روش سیمپلکس بود که درسال 1947 توسط [6] gorge dantzigارائه شد. حتی بعد از این که klee و minty در [13] ثابت کردند که پیچیدگی روش سیمپلکس چند جمله ای نیست، این روش همچنان برای حل مسائل برنامه ریزی خطی استفاده می شد. اولین الگوریتم زمان چند جمل...
15 صفحه اولروش های نقطه درونی برای حل مسائل مکمل خطی
در این پایان نامه ما به مطالعه ی روشهای نقطه درونی برای حل مسائل مکمل خطی پرداخته و یک روش نقطه درونی شدنی و نشدنی جدید برای مسائل مکمل خطی ارائه داده و ثابت کردیم که پیچیدگی این الگوریتم ها منطبق بربهترین کران تکرار بدست آمده برای این نوع مسائل می باشد
15 صفحه اولارتباط بین روش نقطه درونی و مسائل نقطه ثابت
برنامه ریزی ریاضی(بهینه سازی) شاخه ای از ریاضی کاربردی است که در شاخه های مختلف علم چون صنعت، اقتصاد و...، کاربرد دارد. در برنامه ریزی با یک هدف و ناحیه ای که مسئله روی آن تعریف شده است (ناحیه جواب مسئله) روبرو هستیم،که هدف بیشینه یا کمینه کردن تابع هدف روی این ناحیه است. اما متناظر با اینکه تابع هدف یا ناحیه جواب مسئله خطی باشند یا غیر خطی، مسئله ی ما نیز برنامه ریزی خطی و غیر خطی، به طور متنا...
15 صفحه اولتوسعه یک الگوریتم نقطه مرزی برای حل مسائل برنامهریزی خطی با جواب اولیه موجه
در این تحقیق برای حل مسائل برنامه ریزی خطی، الگوریتم SALCHOW توسعه داده شده است که در هرگام در جهت گرادیان مقید تابع هدف حرکت میکند بهنوعی که همواره روی مرز ناحیه موجه باقی میماند. این نوع حرکت بر روی مرز ناحیه موجه متفاوت با رفتار الگوریتم سیمپلکس است که روی گوشه های فضای موجه حرکت میکند. از سوی دیگر با رفتار الگوریتم های نقاط درونی هم که از روی مرز فضای موجه جدا شده و وارد آن می شوند، نیز ...
متن کاملالگوریتم نقطه درونی با گام کامل نیوتن برای مسائل مکمل غیر خطی p*(k)
مسائل مکمل غیرخطی کاربردهای مختلفی در مهندسی، تحقیق در عملیات و علوم دارند. در این پایان نامه به بررسی مسائل مکمل غیرخطی p{*}(k) می پردازیم و با استفاده از روش نقطه درونی شدنی و نشدنی بهترین کران پیچیدگی را برای این نوع مسائل به دست می آوریم. در دهه گذشته پنگ الگوریتم نقطه درونی اولیه-دوگان را بر پایه توابع هسته ای خود-منتطم برای مسائل خطی ارائه داد و همچنین کران پیچیدگی را محاسبه کرد...
15 صفحه اولروش های نقطه درونی برای حل مسائل مکمل خطی با استفاده از یک تابع هسته ای
برای حل مسائل مکمل خطی روش های زیادی وجود دارد. از بهترین روش ها برای حل این مسائل روش های نقطه درونی را می توان نام برد.این روش ها خود به دو قسمت تقسیم می شوند: روش های نقطه درونی شدنی وروش های نقطه درونی نشدنی.روش های نقطه درونی شدنی با یک جواب شدنی اکید شروع می شوند و الگوریتم به گونه ای طی می شود که شدنی بودن جواب ها در طول الگوریتم حفظ شود.
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023